首页 >> 最新文章

微流控动力源之微泵的发展现状分析应城

发布时间:2019-12-03 18:13:56 来源:麻麻机械网

2017-05-24 11:25:48来源: 贤集网

贤集网通用设备频道讯:微泵作为微流体系统的“心脏”,是微流体输送的动力源,也是微流体系统发展水平的重要标志。作为一种重要的微型执行部件,微泵还可广泛应用于药物输送、血液运输、DNA合成、电子冷却系统、微全分析系统、微型燃料电池、微型卫星推进系统等领域,具有巨大的市场应用前景。

无阀微泵快速发展

微泵根据其有无可动阀片分为有阀微泵和无阀微泵。典型的无阀微泵有收缩-扩张型微泵,以及基于流体性质的非机械式微泵。有阀微泵的优点是原理简单,制造工艺成熟,易于控制,反向截止性能较好。

但缺点也很明显:由于阀片的存在,微泵加工工艺要求高,结构复杂,不利于集成以及微型化;阀片易疲劳,并且回流现象不可避免,微泵效率低;在药物输送、血液运输等领域应用中,阀门的存在会造成堵塞,且容易损伤细胞。

相比于有阀微泵,无阀微泵有以下优点:结构简单,易于加工和制备,可以制成平面结构,或者直接和微流控芯片一体化加工,便于微泵的微型化、集成化;无阀微泵利用微流体的特性,可以连续输送流体,能精确检测和控制流量,在生物医学方面应用广泛。因此,无阀微泵成为21世纪微流体系统微型化、集成化、控制精准化程度进一步提高的突破口,具有广阔的应用前景。

聚合物材料成为主流

微泵材料的选择对微泵的设计制作、性能、成本以及应用都有显著的影响。良好的微泵材料应该具有与操作环境良好兼容、制作工艺简单、可大批量生产、疲劳寿命高等特点。

根据当今发表的微泵文献,多数以硅半导体、玻璃为材料。随着微泵技术的发展,聚合物材料如聚二甲基硅氧烷(PDMS)、光刻胶、电致动聚合物材料( EAP)、离子导电聚合胶片( ICPF)、聚对二甲苯(Parylene) 、聚甲基丙烯酸甲酯( PMMA)等也广泛用来制作微泵,其中PDMS最为常见,电致动聚合物如离子聚合物金属复合材料(IPMC)、介电弹性体(DE)、聚偏二氟乙烯( PVDF)等作为新型智能材料以其独特的优点成为国内外研究的热点。

以硅为材料的微泵工艺成熟,但加工制作复杂,成本较高,生物相容性差,在生物医学领域的应用受到限制。而基于聚合物材料的微泵有种类多、可供选择余地大、制作工艺简单、易于集成、生物兼容性好、性能优良、成本低等优点,非常适合大批量生产,使一次性使用的医学微泵成为可能。

微泵结构不断优化

首先是微泵腔体结构的优化。微泵腔体结构会影响微泵的压力、流量、流动损失系数以及流动稳定性。多数微泵均为单腔体结构,为了提高微泵的性能,研制多腔体结构微泵已成为一种趋势,目前主要集中在两腔体的研究上。

多腔体微泵可减轻流体脉动性,提高输送能力,并且压力和流量稳定,提高微泵效率。有实验研究发现,两腔串联结构,其输出压力和流量分别是单腔的2倍和1.4倍,而且综合性能较高;并联结构输出压力不变,但流量增加一倍,而且脉动小。

微流道是无阀微泵的关键结构,其结构制约着微泵性能,有必要对微流道结构进行优化。有关学者提出了利用锯齿形微流道代替传统扩张/收缩微流道,有效提高了微泵性能。锯齿型微流道由于侧面齿形角的存在,流动过程更易产生漩涡,使流道压力损失降低,其最大流量和最大压头都得到提高。

Li等模仿鱼的鳍片,在微流道侧壁增加微翅片结构,微泵流动效率提高了10% ,在100 V,3 kHz的驱动电压下测试,微泵性能提高了35% 。浙江大学傅新等利用Micro-DPIV技术对无阀微泵进行流场检测,探究了微泵的流动机理,为微泵性能检测、流道结构优化设计提供了实验验证和技术指导。

seo外链怎么做

seo优化怎么做

如何seo优化

友情链接